Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review

Author:

Nordin Noor Afeefah,Mohamed Ansari Mohamed Nainar Mohamed,M. Nomanbhay Saifuddin M.ORCID,A. Hamid Nasri A.ORCID,Tan Nadia M. L.ORCID,Yahya Zainudin,Abdullah Izhan

Abstract

Hybrid systems have gained significant attention among researchers and scientists worldwide due to their ability to integrate solar cells and supercapacitors. Subsequently, this has led to rising demands for green energy, miniaturization and mini-electronic wearable devices. These hybrid devices will lead to sustainable energy becoming viable and fossil-fuel-based sources of energy gradually being replaced. A solar photovoltaic (SPV) system is an electronic device that mainly functions to convert photon energy to electrical energy using a solar power source. It has been widely used in developed countries given that they have advanced photovoltaic (PV) technology that reduces dependence on fossil fuels for energy generation. Furthermore, a supercapacitor is an alternative solution for replacing heavy batteries and it is a system with a prominent high power density and a long life cycle. Its unique properties of high capacitance with low voltage limits lead to this highly in-demand material being incorporated into goods and services that are produced by the electrical and electronics industries. It is another option for grid-based power or large batteries. Since supercapacitors have the ability to store huge amounts of energy, they allow for a novel system that integrates supercapacitors with solar cells in which energy generation and energy storage are combined into one system. This paper explores the common materials that are used for solar cells and supercapacitors, the working mechanisms, the effectiveness of the integrated device and the technical challenges that are encountered when refining this device. Hence, this review serves as a guide for choosing the right materials and methods in order to produce an integrated PV solar cell–energy storage device for various applications.

Funder

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3