Abstract
In the past few decades, extensive studies have been performed to utilize the solar energy for photocatalytic water splitting; however, up to the present, the overall efficiencies reported in the literature are still unsatisfactory for commercialization. The crucial element of this challenging concept is the proper selection and design of photocatalytic material to enable significant extension of practical application perspectives. One of the important features in describing photocatalysts, although underestimated, is particle morphology. Accordingly, this review presents the advances achieved in the design of photocatalysts that are dedicated to hydrogen generation, with an emphasis on the particle morphology and its potential correlation with the overall reaction performance. The novel concept of this work—with the content presented in a clear and logical way—is based on the division into five parts according to dimensional arrangement groups of 0D, 1D, 2D, 3D, and combined systems. In this regard, it has been shown that the consideration of the discussed aspects, focusing on different types of particle morphology and their correlation with the system’s efficiency, could be a promising route for accelerating the development of photocatalytic materials oriented for solar-driven hydrogen generation. Finally, concluding remarks (additionally including the problems connected with experiments) and potential future directions of particle morphology-based design of photocatalysts for hydrogen production systems have been presented.
Funder
National Natural Science Foundation of China
the Natural Science Foundation of the Hubei province of China
Ministerstwo Edukacji i Nauki
Ministry of Education, Culture, Sports, Science and Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献