Abstract
The justification for the construction of a wind farm depends primarily on two factors. The first one is the availability of the area with significant windiness; the second one is the environmental conditions in the selected location. The aim of this paper was to demonstrate the need for parallel noise and energy analyses during the design of a turbine location and selection of its type on the wind farm. The noise analyses were performed according to ISO 9613-2. A detailed analysis of wind conditions in a given location is a basic activity to determine the profitability of a wind power plant foundation. The main environmental impact of WF is noise emission. The examples of wind turbines’ selection optimally utilizing wind resources in two particular locations are presented. Six wind turbines were analyzed for each location. The choice of a wind turbine for the examined location was determined by the parameters of the device, the results of annual wind measurements, and acceptable noise levels in the environment. The three devices that met the acoustic criteria and the most energy efficient ones are indicated. We describe how a proper process of selecting a type of WT for a specific location should proceed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference37 articles.
1. WWW.dtu.dk
https://windenergy.dtu.dk/english/research/publicationslist?dtulistcode=ISTLIST46&fr=1&mr=100&ptype=all&qt=DtuPublicationQuery
2. International Energy Outlook 2019 with Projections to 2050,2019
3. Wind and Solar Power for Electricity Generation: Significant Action Needed If EU Targets to be Met,2019
4. How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas
5. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines;Letcher,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献