Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades

Author:

Duthé GregoryORCID,Abdallah ImadORCID,Barber Sarah,Chatzi EleniORCID

Abstract

Leading edge surface erosion is an emerging issue in wind turbine blade reliability, causing a reduction in power performance, aerodynamic loads imbalance, increased noise emission, and, ultimately, additional maintenance costs, and, if left untreated, it leads to the compromise of the functionality of the blade. In this work, we first propose an empirical spatio-temporal stochastic model for simulating leading edge erosion, to be used in conjunction with aeroelastic simulations, and subsequently present a deep learning model to be trained on simulated data, which aims to monitor leading edge erosion by detecting and classifying the degradation severity. This could help wind farm operators to reduce maintenance costs by planning cleaning and repair activities more efficiently. The main ingredients of the model include a damage process that progresses at random times, across multiple discrete states characterized by a non-homogeneous compound Poisson process, which is used to describe the random and time-dependent degradation of the blade surface, thus implicitly affecting its aerodynamic properties. The model allows for one, or more, zones along the span of the blades to be independently affected by erosion. The proposed model accounts for uncertainties in the local airfoil aerodynamics via parameterization of the lift and drag coefficients’ curves. The proposed model was used to generate a stochastic ensemble of degrading airfoil aerodynamic polars, for use in forward aero-servo-elastic simulations, where we computed the effect of leading edge erosion degradation on the dynamic response of a wind turbine under varying turbulent input inflow conditions. The dynamic response was chosen as a defining output as this relates to the output variable that is most commonly monitored under a structural health monitoring (SHM) regime. In this context, we further proposed an approach for spatio-temporal dependent diagnostics of leading erosion, namely, a deep learning attention-based Transformer, which we modified for classification tasks on slow degradation processes with long sequence multivariate time-series as inputs. We performed multiple sets of numerical experiments, aiming to evaluate the Transformer for diagnostics and assess its limitations. The results revealed Transformers as a potent method for diagnosis of such degradation processes. The attention-based mechanism allows the network to focus on different features at different time intervals for better prediction accuracy, especially for long time-series sequences representing a slow degradation process.

Funder

Swiss National Science Foundation

European Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3