Extended Equal Area Criterion Revisited: A Direct Method for Fast Transient Stability Analysis

Author:

Bahmanyar Alireza,Ernst Damien,Vanaubel Yves,Gemine Quentin,Pache Camille,Panciatici Patrick

Abstract

For transient stability analysis of a multi-machine power system, the Extended Equal Area Criterion (EEAC) method applies the classic Equal Area Criterion (EAC) concept to an approximate One Machine Infinite Bus (OMIB) equivalent of the system to find the critical clearing angle. The system-critical clearing time can then be obtained by numerical integration of OMIB equations. The EEAC method was proposed in the 1980s and 1990s as a substitute for time-domain simulation for Transmission System Operators (TSOs) to provide fast, transient stability analysis with the limited computational power available those days. To ensure the secure operation of the power system, TSOs have to identify and prevent potential critical scenarios through offline analyses of a few dangerous ones. These days, due to increased uncertainties in electrical power systems, the number of these critical scenarios is increasing, substantially, calling for fast, transient stability analysis techniques once more. Among them, the EEAC is a unique approach that provides not only valuable information, but also a graphical representation of system dynamics. This paper revisits the EEAC but from a modern, functional point of view. First, the definition of the OMIB model of a multi-machine power system is redrawn in its general form. To achieve fast, transient stability analysis, EEAC relies on approximate models of the true OMIB model. These approximations are clarified, and the EAC concept is redefined with a general definition for instability, and its conditions. Based on the defined conditions and definitions, functions are developed for each EEAC building block, which are later put out together to provide a full-resolution, functional scheme. This functional scheme not only covers the previous literature on the subject, but also allows to introduce several possible new EEAC approaches and provides a detailed description of their implementation procedure. A number of approaches are applied to the French EHV network, and the approximations are examined.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Transient Stability of Power Systems: A Unified Approach to Assessment and Control;Pavella,2012

2. Electric Circuits; Theory and Applications;Dahl,1938

3. A graphical solution of transient stability

4. Power System Stability;Kimbark,1948

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Promises and challenges of grid forming: Transmission system operator, manufacturer and academic view points;Electric Power Systems Research;2024-10

2. SOStab: A Matlab toolbox for transient stability analysis;Electric Power Systems Research;2024-10

3. Identification of the critical cluster of generators by during fault angle trajectory estimation for transient stability analysis;Electric Power Systems Research;2024-09

4. Transient voltage problem analysis of multi-level transmission cross section limit coupling characteristics based on cluster analysis;2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET);2024-05-17

5. Equal Area Criterion Considering Switching Dynamics;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3