Geochemical Characteristics of Expelled and Residual Oil from Artificial Thermal Maturation of an Early Permian Tasmanite Shale, Australia

Author:

Xie XiaominORCID,Wang YeORCID,Lin Jingwen,Wu Fenting,Zhang Lei,Liu Yuming,Hu Xu

Abstract

Lipid biomarkers play an important role in defining oil-source rock correlations. A fundamental assumption is that composition (or ratios) of biomarkers in oil is not significantly different from that in bitumen in the source rock. In order to compare the geochemical characteristics of expelled oil and residual oil, a Permian Tasmanite oil shale was used for an artificial maturation experiment to simulate the oil generation period. The results show that the Tasmanite oil shale generated high amounts of hydrocarbons (731 mg HC/g TOC) at low maturation temperatures (340 °C). The hydrocarbon (HC) group compositions are different between the expelled oil (with more aromatic HC and saturated HC) and the residual oil (with more resin fraction and asphaltene). The Pr/Ph ratio (up to 4.01) of the expelled hydrocarbons was much higher than that in residual oil (<1.0). Maturity-related biomarkers Ts/(Ts + Tm), and αααC29-20S/(20S + 20R) and C29-αββ/(ααα + αββ), also showed complicated variations with pyrolysis temperature, especially at post peak oil generation. C27-, C28-, and C29- sterane distributions showed variations with pyrolysis temperature. Therefore, without considering the influence of maturity on the abundance of compounds, either source, maturity and/or organic matter type from the chemical characteristics may not be correct.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3