Author:
Mao Longmei,Li Yi,Chen Hu,Yu Longxin,Zhang Jianhua
Abstract
The characteristics of mechanical flexibility, low health risk, and simple processing of polymer nanocomposite materials make them potentially applicable as flexible X-ray detectors. In this study, we report on a high sensitivity, environmentally friendly, and flexible direct X-ray detector using polymer nanocomposite material consisting of bismuth oxide (Bi2O3) nanoparticles and polydimethylsiloxane (PDMS). This detector was realized by printing patterned Ag electrodes on the polymer nanocomposite material. The response of PDMS to X-rays was verified for the first time, and the effect of doping different contents of Bi2O3 nanoparticles on the performance of the device was tested. The optoelectronic performance of the optimized detector indicated a high sensitivity (203.58 μC Gyair−1 cm−2) to low dose rate (23.90 μGyair s−1) at a 150 V bias voltage and the X-ray current density (JX-ray) was 10,000-fold higher than the dark current density (Jdark). The flexible direct X-ray detector could be curled for 10,000 cycles with slight performance degradation. The device exhibited outstanding stability after storage for over one month in air. Finally, this device provides new guidance for the design of high-performance flexible direct X-ray detectors.
Funder
National Natural Science Foundation of China
National key research and development program of China
Shanghai Industrial foundation project
Subject
General Materials Science,General Chemical Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献