Optimizing the Properties of La0.8Sr0.2CrO3 Thin Films through Post-Annealing for High-Temperature Sensing

Author:

Liu DanORCID,Shi PengORCID,Liu Yantao,Zhang Yijun,Tian Bian,Ren Wei

Abstract

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3