Abstract
An extension of the Rayleigh–Ritz variational method to objects with superquadric and superellipsoid shapes and cylinders with cross-sections delimited by a superellipse is presented. It enables the quick calculation of the frequencies and displacements for shapes commonly observed in nano-objects. Original smooth shape variations between objects with plane, convex, and concave faces are presented. The validity of frequently used isotropic approximations for experimentally relevant vibrations is discussed. This extension is expected to facilitate the assignment of features observed with vibrational spectroscopies, in particular in the case of single-nanoparticle measurements.
Funder
Agence Nationale de la Recherche
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献