Cell Fault Identification and Localization Procedure for Lithium-Ion Battery System of Electric Vehicles Based on Real Measurement Data

Author:

Kocsis Szürke Szabolcs,Sütheö Gergő,Apagyi Antal,Lakatos IstvánORCID,Fischer SzabolcsORCID

Abstract

Vehicle safety risk can be decreased by diagnosing the lithium-ion battery system of electric road vehicles. Real-time cell diagnostics can avoid unexpected occurrences. However, lithium-ion batteries in electric vehicles can significantly differ in design, capacity, and chemical composition. In addition, the battery monitoring systems of the various vehicles are also diverse, so communication across the board is not available or can only be achieved with significant difficulty. Hence, unique type-dependent data queries and filtering are necessary in most cases. In this paper, a Volkswagen e-Golf electric vehicle is investigated; communication with the vehicle was implemented via an onboard diagnostic port (so-called OBD), and the data stream was recorded. The goal of the research is principally to filter out, identify, and localize defective/weak battery cells. Numerous test cycles (constant and dynamic measurements) were carried out to identify cell abnormalities (so-called deviations). A query and data filtering process was designed to detect defective battery cells. The fault detection procedure is based on several cell voltage interruptions at various loading levels. The methodology demonstrated in this article uses a fault diagnosis technique based on voltage abnormalities. In addition, it employs a hybrid algorithm that executes calculations on measurement and recorded data. In the evaluation, a status line comprising three different categories was obtained by parametrizing and prioritizing (weighting) the individual measured values. It allows the cells to be divided into the categories green (adequate region), yellow (to be monitored), and red (possible error). In addition, several querying strategies were developed accordingly to clarify and validate the measurement results. The several strategies were examined individually and analyzed for their strengths and weaknesses. Based on the results, a data collection, processing, and evaluation strategy for an electric vehicle battery system have been developed. The advantage of the developed algorithm is that the method can be adapted to any electric or hybrid vehicle battery.

Funder

European Union within the framework of the National Laboratory

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3