1. (2022, December 01). Available online: https://www.globenewswire.com/fr/news-release/2020/04/02/2010880/0/en/Neural-Network-Market-to-reach-38-71-billion-Globally-by-2023-Says-Allied-Market-Research.html.
2. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014, January 14–16). Intriguing properties of neural networks. Proceedings of the ICLR, Banff, AB, Canada.
3. Goodfellow, I.J., Shlens, J., and Szegedy, C. (2015, January 7–9). Explaining and harnessing adversarial examples. Proceedings of the ICLR, San Diego, CA, USA.
4. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., and Swami, A. (2016, January 21–24). The Limitations of Deep Learning in Adversarial Settings. Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany.
5. Ma, X., Li, B., Wang, Y., Erfani, M.S., Wijewickrema, N.R.S., Houle, E.M., Schoenebeck, G., Song, D., and Bailey, J. (May, January 30). Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. Proceedings of the ICLR, Vancouver, BC, Canada.