Edge Detection via Fusion Difference Convolution

Author:

Yin Zhenyu12ORCID,Wang Zisong12ORCID,Fan Chao12ORCID,Wang Xiaohui12ORCID,Qiu Tong13ORCID

Affiliation:

1. Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang 110142, China

Abstract

Edge detection is a crucial step in many computer vision tasks, and in recent years, models based on deep convolutional neural networks (CNNs) have achieved human-level performance in edge detection. However, we have observed that CNN-based methods rely on pre-trained backbone networks and generate edge images with unwanted background details. We propose four new fusion difference convolution (FDC) structures that integrate traditional gradient operators into modern CNNs. At the same time, we have also added a channel spatial attention module (CSAM) and an up-sampling module (US). These structures allow the model to better recognize the semantic and edge information in the images. Our model is trained from scratch on the BIPED dataset without any pre-trained weights and achieves promising results. Moreover, it generalizes well to other datasets without fine-tuning.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Chen, L.C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv, Available online: https://arxiv.org/abs/1706.05587.

2. Li, L., Zhou, T., Wang, W., Li, J., and Yang, Y. (2022, January 18–24). Deep Hierarchical Semantic Segmentation. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA.

3. Tao, Z., Wei, S., and Ji, S. (2022, January 18–24). E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA.

4. Cheng, X., Xiong, H., Fan, D.P., Zhong, Y., Harandi, M.T., Drummond, T., and Ge, Z. (2022, January 18–24). Implicit Motion Handling for Video Camouflaged Object Detection. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA.

5. A robust line-tracking photogrammetry method for uplift measurements of railway catenary systems in noisy backgrounds;Jiang;Mech. Syst. Sig. Process.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3