GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support, Case Study—Nature Park Golija, Serbia

Author:

Novkovic IvanORCID,Markovic Goran B.ORCID,Lukic Djordje,Dragicevic SlavoljubORCID,Milosevic MarkoORCID,Djurdjic Snezana,Samardzic Ivan,Lezaic Tijana,Tadic MarijaORCID

Abstract

The territory of the Republic of Serbia is vulnerable to various natural disasters, among which forest fires stand out. In relation with climate changes, the number of forest fires in Serbia has been increasing from year to year. Protected natural areas are especially endangered by wildfires. For Nature Park Golija, as the second largest in Serbia, with an area of 75,183 ha, and with MaB Reserve Golija-Studenica on part of its territory (53,804 ha), more attention should be paid in terms of forest fire mitigation. GIS and multi-criteria decision analysis are indispensable when it comes to spatial analysis for the purpose of natural disaster risk management. Index-based and fuzzy AHP methods were used, together with TOPSIS method for forest fire susceptibility zonation. Very high and high forest fire susceptibility zone were recorded on 26.85% (Forest Fire Susceptibility Index) and 25.75% (fuzzy AHP). The additional support for forest fire prevention is realized through an additional Internet of Thing (IoT)-based sensor network that enables the continuous collection of local meteorological and environmental data, which enables low-cost and reliable real-time fire risk assessment and detection and the improved long-term and short-term forest fire susceptibility assessment. Obtained results can be applied for adequate forest fire risk management, improvement of the monitoring, and early warning systems in the Republic of Serbia, but are also important for relevant authorities at national, regional, and local level, which will be able to coordinate and intervene in a case of emergency events.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3