Abstract
The study presents the results of research on using fixed-bed, activated carbon (AC) adsorbers in the cleaning of heavily tar-laden producer gas from the gasification of biomass. The efficiency of removal of organic compounds as well as the remaining adsorption capacity of the bed were determined using a spectrum of commonly applied diagnostic methods, including qualitative and quantitative analyses of the adsorbed compounds and changes in the pore volume of the bed material (IN, MN). The authors compare these lab quantifications with a simple technique which is based on the analysis of the changes in the position of temperature front in the bed. The main benefit of the latter is the possibility of performing the diagnostics of the bed “online” and using low-cost temperature measurements. The test was performed using a commercially available AC Desotec AIRPEL 10-3 and real producer gas obtained through the gasification of alder chips. For tar, VOC and C2–C5 compounds, the removal efficiencies reached respectively 74.5%-wt., 52.8%-wt., and 85.5%-wt. Obtained results indicate that depending on the final application of the gas, the use of dry adsorption systems is an interesting alternative to the well-established but complicated, cumbersome, and costly wet scrubbers. Moreover, a concept for in situ regeneration of the adsorbent, coupled with direct reforming of the tars, is presented and discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献