Development of Monitoring and Forecasting Technology Energy Efficiency of Well Drilling Using Mechanical Specific Energy

Author:

Kunshin Andrey,Dvoynikov Mikhail,Timashev Eduard,Starikov Vitaly

Abstract

This article is devoted to the development of technology for improving the efficiency of directional well drilling by predicting and adjusting the system of static and dynamic components of the actual weight on the bit, based on the real-time data interpretation from telemetry sensors of the bottom hole assembly (BHA). Studies of the petrophysical and geomechanical properties of rock samples were carried out. Based on fourth strength theory and the Palmgren–Miner fatigue stress theory, the mathematical model for prediction of effective distribution of mechanical specific energy, using machine learning methods while drilling, was developed. An algorithm was set for evaluation and estimation of effective destruction of rock by comparing petrophysical data in the well section and predicting the shock impulse of the bit. Based on the theory provided, it is assumed that the given shock impulse is an actual representation of an excessive energy, conveyed to BHA. This excessive energy was quantitively determined and expressed as an adjusting coefficient for optimal weight on bit. The developed mathematical and predictive model helps to identify the presence of ineffective rock destruction and adjust drilling regime accordingly. Several well drilling datasets from the North Sea were analyzed. The effectiveness of the developed mathematical model and algorithms was confirmed by testing well drilling data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3