Online Combustion Status Recognition of Municipal Solid Waste Incineration Process Using DFC Based on Convolutional Multi-Layer Feature Fusion

Author:

Pan Xiaotong12,Tang Jian12,Xia Heng12,Wang Tianzheng12

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Laboratory of Smart Environmental Protection, Beijing 100124, China

Abstract

The prevailing method for handling municipal solid waste (MSW) is incineration, a critical process that demands safe, stable, and eco-conscious operation. While grate-typed furnaces offer operational flexibility, they often generate pollution during unstable operating conditions. Moreover, fluctuations in the physical and chemical characteristics of MSW contribute to variable combustion statuses, accelerating internal furnace wear and ash accumulation. Tackling the challenges of pollution, wear, and efficiency in the MSW incineration (MSWI) process necessitates the automatic online recognition of combustion status. This article introduces a novel online recognition method using deep forest classification (DFC) based on convolutional multi-layer feature fusion. The method entails several key steps: initial collection and analysis of flame image modeling data and construction of an offline model utilizing LeNet-5 and DFC. Here, LeNet-5 trains to extract deep features from flame images, while an adaptive selection fusion method on multi-layer features selects the most effective fused deep features. Subsequently, these fused deep features feed into DFC, constructing an offline recognition model for identifying combustion status. Finally, embedding this recognition system into an existing MSWI process data monitoring system enables online flame video recognition. Experimental results show remarkable accuracies: 93.80% and 95.08% for left and right grate furnace offline samples, respectively. When implemented in an online flame video recognition platform, it aptly meets recognition demands.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3