Hybrid Integrated Computing Algorithm for Sustainable Tourism

Author:

Liao Yuan-Hsun1ORCID,Chang Po-Chun1,Li Hsiao-Hui2ORCID

Affiliation:

1. Department of Computer Science, Taughai University, Taichung 407224, Taiwan

2. Department of Maritime Information and Technology, National Kaohsiung University of Science and Technology, Cijin Campus, Kaohsiung 805301, Taiwan

Abstract

To avoid destroying the natural environment, we can create tourist paths without disrupting ecological systems or rare places such as rainforests that contain endangered species. Likewise, in sustainable tourism, we should consider visiting national parks or national museums as a way to understand the core values and the meaning of that culture and environment more clearly. In this paper, we consider which points tourists need to avoid or visit for sustainable tourism. We designed an algorithm that can give a path to avoid certain points or to go to a preferred point. If this algorithm does not give any weight, it will give the shortest path from the start to the end, and it can decide which vertices to avoid or travel to. Moreover, it can be used to vary the weights of different positive or negative values to obtain a path to avoid a point or to reach a point. Compared to Dijkstra’s algorithm, we can add a negative weight to the graph and still find the shortest path. In application, it can be used for path schedule decisions. We did not wave the large resources to calculate the walk length. In the usage scenario, users only need to provide the starting node, end node, avoidance point, and facing point to calculate the best path. This algorithm will give a good path for users. At the same time, users can use this algorithm to implement sustainable travel route planning, such as going to museums, avoiding rare environments, etc. So, this algorithm provides a new way to decide the best path. Finally, the experimental results show that the classic algorithms cannot avoid points. In real tourism, tourists can use this algorithm for travel planning to achieve sustainable tourism.

Funder

Hsiehlung Electromechanical Technology Co., Ltd.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3