Effect of Magnetized Water-Based Alkaline Activator on Geopolymer Concrete Mechanical Performance and Durability

Author:

Khattab Sarah A.1,Elshikh Mohamed M. Yousry1,Elemam Walid E.1,Elshami Ahmed A.2,Youssf Osama1ORCID

Affiliation:

1. Structural Engineering Department, Mansoura University, Mansoura 35516, Egypt

2. Housing & Building National Research Centre, Dokki, Giza 12611, Egypt

Abstract

One of the most important challenges in developing the concrete industry is to use sustainable materials that are able to improve concrete properties. Magnetized water (MW) is a type of water that can replace tap water (TW) in conventional concrete and enhance its mechanical properties. However, the performance of MW in geopolymer concrete has not been well investigated up to now. The goal of this study is to measure the effect of using an alkaline activator (AA) made of MW on the mechanical properties and durability of fly ash (FA)-based geopolymer concrete. The AA was a mixture of sodium hydroxide (SH) solution and sodium silicate (SS) solution. Eighteen geopolymer concrete mixes were tested for several fresh, hardened, and durability properties. Of these mixes, nine were prepared with AA made of MW and the other nine were the same but prepared with AA made of TW. The preparation of MW was simply carried out by passing TW across permanent magnets of 1.6 Tesla, and then 1.4 Tesla intensities for 150 cycles. The MW-based AA properties were analyzed and compared to those of the conventional TW-based AA. Several mechanical and durability properties were measured. Scanning electronic microscopy (SEM) analysis was also conducted on selected mixes. The outcomes of the hardened concrete tests demonstrated that while using MW to prepare AA solution contained SH with a molarity of 16 M, an SS/SH ratio of 2, an AA/C ratio of 0.4, a W/C ratio of 10%, and a curing temperature of 115 °C could display the best outcomes in this study when used in geopolymer concrete. Using MW in a geopolymer concrete AA could increase its slump by up to 100% compared to that made of TW. Using MW in the AA enhanced the compressive strength by up to 193%, 192%, and 124% after 7, 28, and 56 days, respectively. The SEM analysis showed that using MW clearly enhanced the surface morphology of geopolymer concrete. The proposed geopolymer concrete made using the MW-based AA in this study sheds the light on a new class of eco-friendly concrete that could possibly be used in many structural applications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3