Arsenic Immobilization for Paddy Field and Improvement of Rice (Oryza sativa L.) Growth through Cerium–Manganese Modified Wheat Straw Biochar Application

Author:

Liang Ting12,Li Lianfang1ORCID

Affiliation:

1. Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Arsenic (As) frequently emerges in paddy soils, necessitating measures to combat soil pollution and protect rice crops from As contamination. In this study, a novel functional biochar (MBC) by loading cerium manganese oxide was prepared, and its effects on soil As immobilization and As uptake by rice in two different As-contaminated paddy soils of 68.99 and 158.52 mgAs·kg−1 (marked as soil-L and soil-H, respectively) were detected. The pot experiment manifested that MBC performed better in stabilizing soil As than original biochar. The incorporation of MBC facilitated the conversion of soil active As to the stable state, promoted the growth of rice plants, and reduced As uptake by rice. Specifically, the total plant biomasses for MBC treatment were increased by 16.13–70.07% and 12.36–92.58% in soil-L and soil-H compared with CK (without material input), respectively. MBC treatments resulted in a reduction of As contents by 34.67–60.13% in roots, 43.68–66.90% in stems, and 54.72–64.65% in leaves for soil-L. Furthermore, in soil-H, the As content in rice roots, stems, and leaves showed a decrease by 49.26–79.03%, 87.10–94.63%, and 75.79–85.71% respectively. This study provides important insights for the remediation of As-contaminated paddy soil using MBC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3