Co-Design Methods for Non-Standard Multi-Storey Timber Buildings

Author:

Orozco Luis12ORCID,Krtschil Anna23ORCID,Wagner Hans Jakob12ORCID,Bechert Simon23ORCID,Amtsberg Felix12ORCID,Knippers Jan23ORCID,Menges Achim12ORCID

Affiliation:

1. Institute for Computational Design and Construction (ICD), University of Stuttgart, 70174 Stuttgart, Germany

2. Cluster of Excellence Integrative Computational Design and Construction for Architecture (IntCDC), University of Stuttgart, 70174 Stuttgart, Germany

3. Institute of Building Structures and Structural Design (ITKE), University of Stuttgart, 70174 Stuttgart, Germany

Abstract

To meet climate change goals and respond to increased global urbanisation, the building industry needs to improve both its building technology and its design methods. Constrained urban environments and building stock extensions are challenges for standard timber construction. Co-design promises to better integrate disciplines and processes, promising smaller feedback loops for design iteration and building verification. This article describes the integrated design, fabrication, and construction processes of a timber building prototype as a case study for the application of co-design methods. Emphasis is placed on the development of design and engineering methods, fabrication and construction processes, and materials and building systems. The development of the building prototype builds on previous research in robotic fabrication (including prefabrication, task distribution, and augmented reality integration), agent-based modelling (ABM) for the design and optimisation of structural components, and the systematisation of timber buildings and their components. The results presented in this article include a functional example of co-design from which best practises may be extrapolated as part of an inductive approach to design research. The prototype, with its co-designed process and resultant flat ceilings, integrated services, wide spans, and design adaptability for irregular column locations, has the potential to expand the design potential of multi-storey timber buildings.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3