Lifecycle Assessment of Two Urban Water Treatment Plants of Pakistan

Author:

Jamil Shayan1ORCID,Pervez Saimar2ORCID,Sarwar Fiza3ORCID,Abid Rameesha4,Jamil Syed Umair Ullah3ORCID,Waseem Hassan56ORCID,Gilbride Kimberley A.6ORCID

Affiliation:

1. Earthworks, Calgary, AB T3P 1B9, Canada

2. Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan

3. Department of Earth and Environmental Sciences, Bahria University, Islamabad 44000, Pakistan

4. Department of Microbiology, Quaid-i-Azam University, Islamabad 44100, Pakistan

5. Department of Biological Sciences, Muslim Youth University, Islamabad 44310, Pakistan

6. Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 0C3, Canada

Abstract

Water treatment technologies are striving to retain their ecological and economic viability despite the rising demand, conventional infrastructure, financial constraints, fluctuating climatic patterns, and highly stringent regulations. This study evaluates the lifecycle environmental impact of urban water treatment systems within the two densely populated South Asian municipalities of Islamabad and Rawalpindi, Pakistan. The scope of this study includes a process-based Life Cycle Assessment (LCA) of the entire water treatment system, particularly the resources and materials consumed during the operation of the treatment plant. The individual and cumulative environmental impact was assessed based on the treatment system data and an in-depth lifecycle inventory analysis. Other than the direct emissions to the environment, the electricity used for service and distribution pumping, coagulant use for floc formation, chlorine gas used for disinfection, and caustic soda used for pH stabilization were the processes identified as the most significant sources of emissions to air and water. The water distribution consumed up to 98% of energy resources. The highest global warming impacts (from 0.3 to 0.6 kg CO2 eq./m3) were assessed as being from the coagulation and distribution processes due to extensive electricity consumption. Direct discharge of the wash and wastewater to the open environment contributed approximately 0.08% of kg-N and 0.002% of kg-P to the eutrophication potential. The outcome of this study resulted in a thorough lifecycle inventory development, including possible alternatives to enhance system sustainability. A definite gap was identified in intermittent sampling at the treatment systems. However, more stringent sampling including the emissions to air can provide a better sustainability score for each unit process.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3