Economic Viability Assessment of Neighbourhood versus Residential Batteries: Insights from an Australian Case Study

Author:

Mohseni Soheil1,Rutovitz Jay1,Smith Heather1,Dwyer Scott1ORCID,Tahir Farzan1

Affiliation:

1. Institute for Sustainable Futures, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

Amidst the evolving paradigms of the contemporary energy landscape, marked by the imperative of sustainability and efficiency, the integration of energy storage has emerged as a transformative strategy that seeks to recalibrate the dynamics of electricity distribution and consumption. However, there remains a pressing need to determine the most economically viable approach for deploying energy storage solutions in residential low-voltage (LV) feeders, especially in rural areas. In this context, this paper presents the results of an economic evaluation of energy storage solutions for a residential LV feeder in a rural town in Australia. Specifically, the study compares the financial viability of a front-of-the-meter (FTM) battery installed on the feeder with that of a fleet of behind-the-meter (BTM) batteries. The FTM battery, with a size of 100 kW/200 kWh, is assumed to be operated by the retailer but owned by the community, with any profits assigned to the community. In this scenario, we studied a battery operating under standard network tariffs and three different trial tariffs that distribution network service providers currently offer in Australia. On the other hand, the fleet of BTM batteries (3 kW, 3.3 kWh) are individually owned by households with solar installations, and their cumulative capacity matches that of the FTM battery. The comparison is based on key economic parameters, including network charges, retail margins, frequency control ancillary service (FCAS) revenues, wholesale energy costs, technology costs associated with community batteries, and net profit or loss for the community, as well as considerations of utility grid arbitrage and solar photovoltaic (PV) self-consumption. The study also assumes different grant levels to assess the impact of subsidies on the economic feasibility for both battery configurations. The findings indicate that, while both require some form of subsidy for profitability, the BTM batteries outperform the FTM battery in terms of economic viability and so would require lower grant support. The FTM battery case finds a need for grants ranging from 75% to 95% to break even, while the BTM fleet requires approximately 50% in grants to achieve a similar outcome. In conclusion, this study highlights the importance of grant support in making energy storage solutions economically feasible. In particular, it highlights how the less mature segment of FTM batteries will need higher support initially if it is to compete with BTM. The outcomes of this study inform decision-making processes for implementing energy storage solutions in similar communities, fostering sustainable and cost-effective energy systems.

Funder

Australian Government’s Regional and Remote Communities Reliability Fund (RRCRF)—Microgrid Program

Victorian Government’s Latrobe Valley Authority

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3