Light Weight, Flexible and Ultrathin PTFE@Ag and Ni@PVDF Composite Film for High-Efficient Electromagnetic Interference Shielding

Author:

Liu Hongbo1ORCID,Huang Jiajie1,Guo Bingzhi1

Affiliation:

1. School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519088, China

Abstract

Dopamine was used to modify polytetrafluoroethylene (PTFE) in order to obtain functional polydopamine (PDA) surface-modified PTFE microporous film (PTFE@PDA). Ag was deposited on the surface of PTFE@PDA using electroless plating in order to obtain Ag-wrapped PTFE@PDA film (PTFE@Ag). A liquid-phase chemical reduction method was employed to prepare nickel nanochains. A Ni@PVDF cast film was obtained by mechanically blended nickel nanochains and polyimide (PVDF). The above two films were hot pressed to give a flexible, ultra-thin, and highly effective electromagnetic shielding composite film with a “3+2” layered structure. IR, XRD, and TEM results showed the PTFE@PDA film surface was coated by a tight plating layer of Ag particles with a particle size of 100~200 nm. PTFE@Ag+Ni@PVDF composite film exhibited excellent electromagnetic shielding effectiveness, with the conductivity of 7507.5 S/cm and the shielding effectiveness of 69.03 dB in the X-band range. After a 2000-cycle bending, this value still remained at 51.90 dB. Furthermore, the composite film presented excellent tensile strength of 62.1 MPa. It has great potential for applications in flexible and wearable intelligent devices.

Funder

Zhuhai Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3