Preparing and Wear-Resisting Property of Al2O3/Cu Composite Material Enhanced Using Novel In Situ Generated Al2O3 Nanoparticles

Author:

Chen Youming1,Ud-din Rafi2,Yang Teng1,Li Tao1,Li Chuanghao1,Chu Aimin1ORCID,Zhao Yuping3

Affiliation:

1. Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. Materials Division, PINSTECH, Post Office Nilore, Islamabad 44000, Pakistan

3. School of Civil and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Al2O3/Cu composite material (ACCM) are highly suitable for various advanced applications owing to its excellent properties. In the present work, a combination of the solution combustion synthesis and hydrogen reduction method was first employed to prepare Al2O3/Cu composite powder (ACCP), and subsequently ACCM was prepared by employing spark plasma sintering (SPS) technique. The effect of Al2O3 contents and SPS temperatures on the properties (relative density, hardness, friction coefficient, and electrical conductivity, et al.) of ACCM were investigated in detail. The results indicated that ACCM was very dense, and microstructure was consisted of fine Al2O3 particles evenly distributed in the Cu matrix. With the increase of SPS temperature, the relative density and hardness of ACCM had first increased and then decreased. At 775 °C, the relative density and hardness had attained the maximum values of 98.19% and 121.4 HV, respectively. With the increase of Al2O3 content, although the relative density of ACCM had gradually decreased, nevertheless, its friction coefficient had increased. Moreover, with the increase of Al2O3 contents, the hardness of ACCM first increased and then decreased, and reached the maximum value (121.4 HV) with 3 wt.% addition. On the contrary, the wear rate of ACCM had first decreased and then increased with the increase of Al2O3 contents, and attained the minimum (2.32 × 10−5 mm3/(N.m)) with 3 wt.% addition.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3