Electrospun Fibers of Biocompatible and Biodegradable Polyesters, Poly(Ethylene Oxide) and Beeswax with Anti-Bacterial and Anti-Fungal Activities

Author:

Kyuchyuk Selin1,Paneva Dilyana1ORCID,Manolova Nevena1ORCID,Rashkov Iliya1ORCID,Karashanova Daniela2ORCID,Naydenov Mladen3,Markova Nadya4

Affiliation:

1. Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria

2. Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 109, BG-1113 Sofia, Bulgaria

3. Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria

4. Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 26, BG-1113 Sofia, Bulgaria

Abstract

Fibrous materials composed of core–sheath fibers from poly(ethylene oxide) (PEO), beeswax (BW) and 5-nitro-8-hydroxyquinoline (NQ) were prepared via the self-organization of PEO and BW during the single-spinneret electrospinning of a homogeneous blend solution of the partners. Additionally, the application of the same approach enabled the preparation of fibrous materials composed of core–double sheath fibers from PEO, poly(L-lactide) (PLA) and NQ or 5-chloro-7-iodo-8-hydroxyquinoline (CQ), as well as from PEO, poly(ε-caprolactone) (PCL) and NQ. The consecutive selective extraction of BW and of the polyester with hexane and tetrahydrofuran, respectively, evidenced that core–double sheath fibers from PEO/polyester/BW/drug consisted of a PEO core, a polyester inner sheath and a BW outer sheath. In order to evaluate the possibility of the application of fibrous materials from PEO/BW/NQ, PEO/PLA/BW/NQ, PEO/PCL/BW/NQ and PEO/PLA/BW/CQ for plant protection, microbiological studies were performed using both phytopathogenic microorganisms (Pseudomonas corrugata, Fusarium graminearum and Fusarium avenaceum) and beneficial microorganisms (Pseudomonas chlororaphis, Bacillus amyloliquefaciens and Trichoderma asperellum). It was found that the fibrous materials had anti-bacterial and anti-fungal activity against both phytopathogenic and beneficial microorganisms. This is the first report on the activity of fibrous materials loaded with 8-hydroxyquinoline derivatives not only against phytopathogenic but also against beneficial microorganisms that are of importance in agriculture.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3