Influence of Fiber Orientation on the Water and Ions Transportation of Engineered Cementitious Composite (ECC)

Author:

Tawfek Abdullah M.12,Ge Zhi1,Li Jian3,Zhang Kangkang4,Jiang Nengdong1,Shao Yingxuan1,Ling Yifeng1ORCID,Šavija Branko5ORCID

Affiliation:

1. School of Qilu Transportation, Shandong University, Jinan 250002, China

2. School of Civil Engineering, Faculty of Engineering, Sana’a University, Sanaa 12544, Yemen

3. Shandong Hi-Speed Group Co., Ltd., Jinan 250098, China

4. China Construction Industrial & Energy Engineering Group Co., Ltd., Nanjing 210023, China

5. Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

Abstract

An engineered cementitious composite (ECC) belongs to a type of high-performance fiber-reinforced materials. Fiber alignment causes the anisotropy of such materials. Herein, the influence of the fiber orientation on water and ion penetration into an ECC was studied. Fiber alignment was achieved using an extrusion approach. Water absorption, sorptivity, chloride penetration resistance, sulfate attack resistance, and freezing–thawing resistance of specimens with fiber aligned horizontally (AH), vertically (AV), and randomly (R), corresponding to the direction of the exposure surface that was studied. The results showed that fibers oriented perpendicular to the water path delayed water migration into the ECC matrix. The sorptivity was significantly affected by the fiber direction. The sorptivity of the AH specimens was 35% and 13% lower than that of the AV and R specimens, respectively. After 180 days of exposure, the chloride penetration depth of the AH specimens was 5.7 mm, which is 13.6% and 20.8% lower than that of the AV and R specimens, respectively. The sulfate ingress profile indicates that the fiber–matrix interface oriented perpendicular to the penetration path can effectively delay sulfate migration. The fiber orientation also influences the compressive strength gain under immersion conditions (Na2SO4 solution, Na2SO4 + NaCl solution, and water). Compared with the AH and R specimens, the AV specimens are more sensitive to the immersion condition. In contrast, the fiber orientation has no significant effect on ECC specimens under freeze–thaw cycles. These findings indicate that controlling the fiber alignment and orientation in an ECC can improve its durability under certain exposure conditions.

Funder

National Natural Science Foundation of China

Taishan Scholars Foundation of Shandong Province

Natural Science Foundation of Shandong Province

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3