Experimental Study on the Fracture Toughness of Bamboo Scrimber

Author:

Zhang Kairan12,Hou Yubo2,Lu Yubin2,Wang Mingtao2

Affiliation:

1. School of Advanced Manufacturing, Fuzhou University, Fuzhou 350108, China

2. Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou 362216, China

Abstract

In the past decade, bamboo scrimber has developed rapidly in the field of building materials due to its excellent mechanical properties, such as high toughness and high tensile strength. However, when the applied stress exceeds the ultimate strength limit of bamboo scrimber, cracks occur, which affects the performance of bamboo scrimber in structural applications. Due to the propensity of cracks to propagate, it reduces the load-bearing capacity of the bamboo scrimber material. Therefore, research on the fracture toughness of bamboo scrimber contributes to determining the material’s load-bearing capacity and failure mechanisms, enabling its widespread application in engineering failure analysis. The fracture toughness of bamboo scrimber was studied via the single-edge notched beam (SENB) experiment and compact compression (CC) method. Nine groups of longitudinal and transverse samples were selected for experimental investigation. The fracture toughness of longitudinal bamboo scrimber under tensile and compressive loadings was 3.59 MPa·m1/2 and 2.39 MPa·m1/2, respectively. In addition, the fracture toughness of transverse bamboo scrimber under tensile and compressive conditions was 0.38 MPa·m1/2 and 1.79 MPa·m1/2, respectively. The results show that, for this material, there was a significant distinction between longitudinal and transverse. Subsequently, three-point bending tests and simulations were studied. The results show that the failure mode and the force–displacement curve of the numerical simulation were highly consistent compared with the experimental results. It could verify the correctness of the test parameters. Finally, the flexural strength of bamboo scrimber was calculated to be as high as 143.16 MPa. This paper provides data accumulation for the numerical simulation of bamboo scrimber, which can further promote the development of bamboo scrimber parameters in all aspects of the application.

Funder

Quanzhou Science and Technology Plan Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3