Forest-PointNet: A Deep Learning Model for Vertical Structure Segmentation in Complex Forest Scenes

Author:

Ma Zhibin1,Dong Yanqi1ORCID,Zi Jiali1,Xu Fu12,Chen Feixiang12ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China

Abstract

The vertical structure of forest ecosystems influences and reflects ecosystem functioning. Terrestrial laser scanning (TLS) enables the rapid acquisition of 3D forest information and subsequent reconstruction of the vertical structure, which provides new support for acquiring forest vertical structure information. We focused on artificial forest sample plots in the north-central of Nanning, Guangxi, China as the research area. Forest sample point cloud data were obtained through TLS. By accurately capturing the gradient information of the forest vertical structure, a classification boundary was delineated. A complex forest vertical structure segmentation method was proposed based on the Forest-PointNet model. This method comprehensively utilized the spatial and shape features of the point cloud. The study accurately segmented four types of vertical structure features in the forest sample location cloud data: ground, bushes, trunks, and leaves. With optimal training, the average classification accuracy reaches 90.98%. The results indicated that segmentation errors are mainly concentrated at the branch intersections of the canopy. Our model demonstrates significant advantages, including effective segmentation of vertical structures, strong generalization ability, and feature extraction capability.

Funder

National Key R&D Program of China

The Emergency Open Competition Project of National Forestry and Grassland Administration

Outstanding Youth Team Project of Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3