Estimating the Quality of the Most Popular Machine Learning Algorithms for Landslide Susceptibility Mapping in 2018 Mw 7.5 Palu Earthquake

Author:

Ma Siyuan12,Shao Xiaoyi34,Xu Chong34ORCID

Affiliation:

1. Institute of Geology, China Earthquake Administration, Beijing 100029, China

2. Key Laboratory of Seismic and Volcanic Hazards, Institute of Geology, China Earthquake Administration, Beijing 100029, China

3. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

4. Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China

Abstract

The Mw 7.5 Palu earthquake that occurred on 28 September 2018 (UTC 10:02) on Sulawesi Island, Indonesia, triggered approximately 15,600 landslides, causing about 4000 fatalities and widespread destruction. The primary objective of this study is to perform landslide susceptibility mapping (LSM) associated with this event and assess the performance of the most widely used machine learning algorithms of logistic regression (LR) and random forest (RF). Eight controlling factors were considered, including elevation, hillslope gradient, aspect, relief, distance to rivers, peak ground velocity (PGV), peak ground acceleration (PGA), and lithology. To evaluate model uncertainty, training samples were randomly selected and used to establish the models 20 times, resulting in 20 susceptibility maps for different models. The quality of the landslide susceptibility maps was evaluated using several metrics, including the mean landslide susceptibility index (LSI), modelling uncertainty, and predictive accuracy. The results demonstrate that both models effectively capture the actual distribution of landslides, with areas exhibiting high LSI predominantly concentrated on both sides of the seismogenic fault. The RF model exhibits less sensitivity to changes in training samples, whereas the LR model displays significant variation in LSI with sample changes. Overall, both models demonstrate satisfactory performance; however, the RF model exhibits superior predictive capability compared to the LR model.

Funder

National Nonprofit Fundamental Research Grant of China

Young Elite Scientists Sponsorship Program by BAST

National Nonprofit Fundamental Research Grant of China, Institute of Geology, China Earthquake Administration

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3