Real-Time Kinematic Positioning (RTK) for Monitoring of Barchan Dune Migration in the Sanlongsha Dune Field, the Northern Kumtagh Sand Sea, China

Author:

Xing Xuegang1,Yang Zhuanling1,Qian Guangqiang2,Zhou Guanghong1

Affiliation:

1. School of Geography and Resource Science, Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Institute of Guizhou Mountain, Guizhou Education University, Guiyang 550018, China

2. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Dune migration is one of the main processes in arid lands’ geomorphology and is important for the design of windbreaks and sand fixation projects and for the monitoring of desertification dynamics. We conducted long-term continuous positioning monitoring of barchan dunes using RTK equipment and wind regime monitoring in the Sanlongsha dune field, which is located in the northern part of China’s Kumtagh Desert. We analyzed the wind energy environment of the study area, the migration characteristics of different positions in the barchan dune, and dune shape changes during different periods. We found that (1) comparing the differences in migration distance and direction measured at six positions in the barchan, there existed variations in barchan migration across these positions. (2) The shape changes at the left horn, right horn, and windward slope of barchans were larger than at the center of the leeward toe and brink, so the estimates based on measurements at these four positions had a weaker fit with the resultant drift potential (RDP) and a greater difference from the resultant drift direction (RDD). (3) The shape of the leeward slope on the barchan did not change much during dune migration, so the center of the leeward toe and brink measurements were closer to the actual dune migration distance and direction. Thus, we recommend using the center of the leeward toe or brink as the optimal measurement points to monitor barchan dune migration. This study will provide a reference for the more accurate measurement of barchan dune migration.

Funder

National Science Foundation of China

Science and Technology Foundation of Guizhou Province

Digital Village Innovation Team of Higher Education Institutions in Guizhou Province

Scientific Research Project of Higher Education Institutions of Guizhou Provincial Department of Education

Reward and subsidy fund project of Guizhou Education University, Ministry of science and technology of the people’s Republic of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3