Investigating Spatial Variations of Compound Heat–Precipitation Events in Guangdong, China through a Convection-Permitting Model

Author:

Zhu Tingan1,Zhang Wei1,Wang Jun1,Chen Yuanpeng1,Xin Shuhao1,Zhu Jinxin1ORCID

Affiliation:

1. Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China

Abstract

Compound heat–precipitation events exert significant impacts on severe weather occurrences. Intense vertical air movement, driving vigorous convection, primarily contributes to the formation of extreme precipitation. Nevertheless, such compound events’ temporal and spatial variation patterns at convection-permitting resolutions remain inadequately explored. This study assesses the performance of the Convection-Permitting Model (CPM) against a model of convection parameterization while investigating the spatial dynamics of compound heat–precipitation events in Guangdong, China. Our findings indicate that the CPM exhibits heightened reliability and precision in simulating temperature and precipitation patterns, especially in extreme precipitation simulation, which would be highly underestimated without a convection-permitting process. Projections from the CPM reveal that, across historical and future periods, the occurrence frequency and fraction of T-P events (instances of extreme heat followed by extreme precipitation) surpass those of P-T events (occurrences of extreme precipitation followed by extreme heat). For T-P events, the CPM exhibits better capability in capturing high-frequency occurrence areas, whereas the results of the relatively low-resolution model show less distinct spatial variations. Both types of events exhibit noticeable upward trends yearly within each period. By the close of this century, the provincial average frequency of P-T events is anticipated to decrease from 20.32 times to 14.55 times. In contrast, the frequency of T-P events is projected to increase from 87.7 times to 101.38 times. These projected changes underscore the shifting dynamics of compound heat–precipitation events in the study region.

Funder

the National Natural Science Foundation of China

the Guangdong Natural Science Foundation

the Guangzhou Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3