River Discharge Inversion Algorithm Based on the Surface Velocity of Microwave Doppler Radar

Author:

Chen Zezong1ORCID,Wang Tao1ORCID,Zhao Chen1ORCID,He Zheyuan1

Affiliation:

1. School of Electronic Information, Wuhan University, Wuhan 430072, China

Abstract

Non-contact methods, which are of great significance to the measurement of river discharge, can not only improve the efficiency of measurement but can also ensure the safety of equipment and personnel. However, owing to their inherent drawbacks such as the requirement of riverbed topography measurements and the difficulty in determining hydrological parameters such as equivalent roughness height, velocity index, etc., there are still challenges for measuring river discharge with high levels of efficiency and accuracy using non-contact methods. To overcome the aforementioned challenges, a new river discharge inversion method is proposed in this paper. In this method, vertical velocities are divided into inner and outer region velocities which can be described by the logarithmic law and the parabolic law, respectively. Applying the river surface velocities collected by microwave Doppler radar and the vertical velocity distributions, the water depths are estimated according to the continuity of the vertical velocities and the shear stresses, and then, the river discharges are obtained by the velocity–area method. The proposed method not only has a simple formula but also comprehensively considers the influence of different hydrological conditions, making it suitable for different river widths and water depths. In this paper, surface velocities collected by microwave Doppler radar on the Yangtze River and the San Joaquin River are used to invert the river discharge, and the results show that for wide–shallow, wide–deep, and narrow–shallow river conditions, the mean percent error (MPE) values of the discharges invertedby the proposed method are 3.91%, 3.82%, and 3.6%, respectively; the root mean square error (RMSE) values are 4.53%, 5.19%, and 4.81%, respectively; and the maximum percent error (MaPE) is less than 15%. The results prove that the proposed method can invert the river discharge with high efficiency and high accuracy under different river widths and water depths without measuring water depth in advance, making it is possible to automatically measure the river discharge in real time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. The Velocity-area Method;Herschy;Flow Meas. Instrum.,1993

2. Measuring River Velocity and Discharge with Acoustic Doppler Profilers;Yorke;Flow Meas. Instrum.,2002

3. Evaluation of River Discharges Monitored by a Fixed Side-Looking Doppler Profiler;Coz;Water Resour. Res.,2008

4. Use of Radars to Monitor Stream Discharge by Noncontact Methods;Costa;Water Resour. Res.,2006

5. Estimating Discharge in Gravel-Bed River Using Non-Contact Ground-Penetrating and Surface-Velocity Radars;Hong;River Res. Appl.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3