Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery

Author:

Hill Victoria J.1ORCID,Zimmerman Richard C.1ORCID,Bissett Paul2,Kohler David3,Schaeffer Blake4,Coffer Megan56,Li Jiang7ORCID,Islam Kazi Aminul8ORCID

Affiliation:

1. Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA 23529, USA

2. Eathon Intelligence LLC, 2210 US Hwy 301 S, Suite 100, Tampa, FL 33619, USA

3. Trimble, Inc., 10368 Westmoor Drive, Westminster, CO 80021, USA

4. Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27709, USA

5. Global Science & Technology, Inc., Greenbelt, MD 20770, USA

6. NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD 20740, USA

7. Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA

8. Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA

Abstract

Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line height (ELH) and dark-object subtraction (DOS) methods were used for atmospheric correction. DOS left residual brightness in the blue and green bands but had minimal impact on the seagrass classification accuracy. However, the brighter reflectance values reduced LAI retrievals by up to 50% compared to ELH-corrected images and ground-based observations. This study offers a potential correction for LAI underestimation due to incomplete atmospheric correction, enhancing the retrieval of seagrass density and above-ground Blue Carbon from WorldView-2 imagery without in situ observations for accurate atmospheric interference correction.

Funder

Florida Department of Environmental Protection

National Aeronautics and Space Administration

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Chmura, G., Short, F., Torio, D., Arroyo-Mora, P., Fajardo, P., Hatvany, M., and van Ardenne, L. (2016). North America’s Blue Carbon: Assessing Seagrass, Salt Marsh and Mangrove Distribution and Carbon Sinks: Project Report, Commission for Environmental Cooperation.

2. The global distribution of seagrass meadows;McKenzie;Environ. Res. Lett.,2020

3. Performance across WorldView-2 and RapidEye for reproducible seagrass mapping;Coffer;Remote Sens. Environ.,2020

4. Koedsin, W., Intararuang, W., Ritchie, R.J., and Huete, A. (2016). An Integrated Field and Remote Sensing Method for Mapping Seagrass Species, Cover, and Biomass in Southern Thailand. Remote Sens., 8.

5. Temporal Stability of Seagrass Extent, Leaf Area, and Carbon Storage in St. Joseph Bay, Florida: A Semi-automated Remote Sensing Analysis;Lebrasse;Estuaries Coasts,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3