Detection of Macroalgal Bloom from Sentinel−1 Imagery

Author:

Chowdhury Sree Juwel Kumar12ORCID,Harun-Al-Rashid Ahmed3ORCID,Yang Chan-Su124ORCID,Shin Dae-Woon12ORCID

Affiliation:

1. Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea

2. Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea

3. Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh

4. Marine Technology and Convergence Engineering, University of Science & Technology, Daejeon 34113, Republic of Korea

Abstract

The macroalgal bloom (MAB) is caused by brown algae forming a floating mat. Most of its parts stay below the water surface, unlike green algae; thus, its backscatter value becomes weaker in the synthetic aperture radar (SAR) images, such as Sentinel−1, due to the dampening effect. Thus, brown algae patches appear to be thin strands in contrast to green algae and their detection by using a global threshold, which is challenging due to a similarity between the MAB patch and the ship’s sidelobe in the case of pixel value. Therefore, a novel approach is proposed to detect the MAB from the Sentinel−1 image by eliminating the ship’s sidelobe. An individually optimized threshold is applied to extract the MAB and the ships with sidelobes from the image. Then, parameters are adjusted based on the object’s area information and the ratio of length and width to filter out ships with sidelobes and clutter objects. With this method, an average detection accuracy of 82.2% is achieved by comparing it with the reference data. The proposed approach is simple and effective for detecting the thin MAB patch from the SAR image.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3