Spatiotemporal Evolutions of the Suspended Particulate Matter in the Yellow River Estuary, Bohai Sea and Characterized by Gaofen Imagery

Author:

Yu Zhifeng12,Zhang Jun1,Chen Zheyu1,Hu Yuekai3ORCID,Shum C. K.4ORCID,Ma Chaofei5,Song Qingjun5ORCID,Yuan Xiaohong12,Wang Ben1ORCID,Zhou Bin126

Affiliation:

1. Institute of Remote Sensing and Earth Sciences, School of Information Science and Engineering, Hangzhou Normal University, Hangzhou 311121, China

2. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China

3. State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China

4. Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA

5. National Satellite Ocean Application Service, Beijing 100081, China

6. School of Engineering, Hangzhou Normal University, Hangzhou 311121, China

Abstract

Suspended particulate matter is a crucial component in estuaries and coastal oceans, and a key parameter for evaluating their water quality. The Bohai Sea, a huge marginal sea covering an expanse of 77,000 km² and constantly fed by numerous sediment-laden rivers, has maintained a high level of total suspended particulate matter (TSM). Despite the widespread development and application of TSM retrieval algorithms using commonly available satellite data like Landsat, Sentinel, and MODIS, developing TSM retrieval algorithms for China’s Gaofen (GF) series (GF-6 and GF-1) in the Bohai Sea is still a great challenge, mainly due to the limited applicability of empirical algorithms. In this study, 259 in situ measured-TSM samples were collected for algorithm development. The remote sensing reflectance (Rrs) curve demonstrates prominent peaks between 550 and 580 nm. Through conversion to remote sensing reflectance, it was found that single-band data had a weak correlation with TSM, reaching a maximum correlation of 0.44. However, by combining bands of band ratio calculations, the correlation was enhanced. Particularly, the blue and green band equivalent Rrs ratio had a correlation coefficient of 0.81 with TSM, and the proposed TSM inversion exponential algorithm developed based on this factor obtained an R-squared (R²) value of 0.76 and a mean relative error (MRE) of 32.24%. Analysis results indicated that: (1) there are spatial variations in the TSM within the Bohai Sea, Laizhou Bay, and the Yellow River estuary, with higher levels near the coast and lower levels in open waters. The Yellow River estuary experiences seasonal fluctuations higher TSM during spring and winter, and lower variations during summer and autumn, and (2) the dynamics of TSM are affected by Yellow River runoff, with increased runoff leads to higher TSM levels and expanded turbid zones. This study proposes a new algorithm to quantify TSM evolutions and distributions in the Bohai Sea and adjacent regions using China’s Gaofen imageries.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3