Slow Slip Events Associated with Seismic Activity in the Hikurangi Subduction Zone, New Zealand, from 2019 to 2022

Author:

Yan Li1234ORCID,Sun Yanling14,Li Meng1234ORCID,El-Mowafy Ahmed2ORCID,Ma Lei5ORCID

Affiliation:

1. Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resourcesc, East China University of Technology, Nanchang 330013, China

2. School of Earth and Planetary Sciences (Spatial Sciences), Curtin University, GPO Box U1987, Perth, WA 6845, Australia

3. Key Laboratory for Digital Land and Resources of Jiangxi Province, East China University of Technology, Nanchang 330013, China

4. School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China

5. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China

Abstract

Slow slip events (SSEs) are geophysical phenomena primarily occurring in subduction zones. These events are often associated with seismic activity and can be detected by Global Positioning System (GPS). However, the relationship between SSEs and seismic activity remains unclear. To further investigate SSEs associated with seismic activity, we conducted SSE detection and inversion for the period from 2019 to 2022 on New Zealand’s North Island, where both SSEs and seismic activity frequently occur. By modeling daily GPS coordinate time series from 40 GPS stations and applying the Network Inversion Filter (NIF) method, we obtain surface displacements, cumulative slips, and slip rates for eight shallow SSEs. Subsequently, we conduct a statistical analysis of seismic activity concerning its spatial distribution and frequency before, during, and after SSE occurrences. The results indicate that SSE1 and SSE7 exhibited larger cumulative slips, at 14.35 and 7.20 cm, and surface displacements, at 4.97 and 2.53 cm, respectively. During their occurrences, the seismic frequency noticeably increased to 6.5 and 5.6 events per day in the Eastern Coastal Region (ECR) of New Zealand’s North Island. However, the other six SSEs, characterized by cumulative slips of less than 6 cm and maximum surface displacements of less than 2 cm, did not lead to a noticeable increase in seismic frequency during their occurrences in the ECR. In the Main Slip Regions (MSR) of these eight SSEs, a significant upward trend in seismic frequency was observed during their occurrences. Therefore, it can be inferred that in the ECR of New Zealand’s North Island, all SSEs result in an increased seismic frequency within their respective MSRs, but only significant SSEs impact the seismic frequency of the ECR. Monitoring shallow SSEs may contribute to the identification and recording of seismic activity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Science and Technology Department

Key Laboratory for Digital Land and Resources of Jiangxi Province, East China University of Technology

Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3