A Multi-Scale Convolution and Multi-Layer Fusion Network for Remote Sensing Forest Tree Species Recognition

Author:

Hou Jinjing1ORCID,Zhou Houkui2ORCID,Hu Junguo2,Yu Huimin34,Hu Haoji4

Affiliation:

1. School of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

2. Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Zhejiang A&F University, Hangzhou 311300, China

3. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

4. State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310027, China

Abstract

Forest tree species identification in the field of remote sensing has become an important research topic. Currently, few research methods combine global and local features, making it challenging to accurately handle the similarity between different categories. Moreover, using a single deep layer for feature extraction overlooks the unique feature information at intermediate levels. This paper proposes a remote sensing image forest tree species classification method based on the Multi-Scale Convolution and Multi-Level Fusion Network (MCMFN) architecture. In the MCMFN network, the Shallow Multi-Scale Convolution Attention Combination (SMCAC) module replaces the original 7 × 7 convolution at the first layer of ResNet-50. This module uses multi-scale convolution to capture different receptive fields, and combines it with the attention mechanism to effectively enhance the ability of shallow features and obtain richer feature information. Additionally, to make efficient use of intermediate and deep-level feature information, the Multi-layer Selection Feature Fusion (MSFF) module is employed to improve classification accuracy. Experimental results on the Aerial forest dataset demonstrate a classification accuracy of 91.03%. The comprehensive experiments indicate the feasibility and effectiveness of the proposed MCMFN network.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3