Monitoring Spatiotemporal Variation of Individual Tree Biomass Using Multitemporal LiDAR Data

Author:

Qi Zhiyong123,Li Shiming123,Pang Yong123ORCID,Du Liming123,Zhang Haoyan123,Li Zengyuan123

Affiliation:

1. Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China

3. National Forestry and Grassland Science Data Center, Beijing 100091, China

Abstract

Assessing the spatiotemporal changes in forest aboveground biomass (AGB) provides crucial insights for effective forest carbon stock management, an accurate estimation of forest carbon uptake and release balance, and a deeper understanding of forest dynamics and climate responses. However, existing research in this field often lacks a comprehensive methodology for capturing tree-level AGB dynamics using multitemporal remote sensing techniques. In this study, we quantitatively characterized spatiotemporal variations of tree-level AGB in boreal natural secondary forests in the Greater Khingan Mountains region using multitemporal light detection and ranging (LiDAR) data acquired in 2012, 2016, and 2022. Our methodology emphasized improving the accuracy of individual tree segmentation algorithms by taking advantage of canopy structure heterogeneity. We introduced a novel three-dimensional metric, similar to crown width, integrated with tree height to calculate tree-level AGB. Moreover, we address the challenge of underestimating tree-level metrics resulting from low pulse density, ensuring accurate monitoring of AGB changes for every two acquisitions. The results showed that the LiDAR-based ΔAGB explained 62% to 70% of the variance of field-measured ΔAGB at the tree level. Furthermore, when aggregating the tree-level AGB estimates to the plot level, the results also exhibited robust and reasonable accuracy. We identified the average annual change in tree-level AGB and tree height across the study region, quantifying them at 2.23 kg and 0.25 m, respectively. Furthermore, we highlighted the importance of the Gini coefficient, which represents canopy structure heterogeneity, as a key environmental factor that explains relative AGB change rates at the plot level. Our contribution lies in proposing a comprehensive framework for analyzing tree-level AGB dynamics using multitemporal LiDAR data, paving the way for a nuanced understanding of fine-scale forest dynamics. We argue that LiDAR technology is becoming increasingly valuable in monitoring tree dynamics, enabling the application of high-resolution ecosystem dynamics products to elucidate ecological issues and address environmental challenges.

Funder

National Key R&D Program of China

National Science and Technology Major Project of China’s High Resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3