Integrating Multi-Point Geostatistics, Machine Learning, and Image Correlation for Characterizing Positional Errors in Remote-Sensing Images of High Spatial Resolution

Author:

Xin Liang12,Zhang Wangle3ORCID,Wang Jianxu4,Wang Sijian1,Zhang Jingxiong4

Affiliation:

1. Shanghai Surveying and Mapping Institute, Shanghai 200063, China

2. Department of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Yangpu, Shanghai 200092, China

3. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

4. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

Abstract

Remote-sensing images of high spatial resolution (HSR) are valuable sources of fine-grained spatial information for various applications, such as urban surveys and governance. There is continuing research on positional errors in remote-sensing images and their impacts in geoprocessing and applications. This paper explores the combined use of multi-point geostatistics (MPS), machine learning—in particular, generalized additive modeling (GAM)—and computer-image correlation for characterizing positional errors in images—in particular, HSR images. These methods are employed because of the merits of MPS in being flexible for non-parametric and joint simulation of positional errors in X and Y coordinates, the merits of GAM in being capable of handling non-stationarity in-positional errors through error de-trending, and the merits of computer-image correlation in being cost-effective in furnishing the training data (TD) required in MPS. Procedurally, image correlation is applied to identify homologous image points in reference-test image pairs to extract image displacements automatically in constructing TD. To cope with the complexity of urban scenes and the unavailability of truly orthorectified images, visual screening is performed to clean the raw displacement data to create quality-enhanced TD, while manual digitization is used to obtain reference sample data, including conditioning data (CD), for MPS and test data for performance evaluation. GAM is used to decompose CD and TD into trends and residuals. With CD and TD both de-trended, the direct sampling (DS) algorithm for MPS is applied to simulate residuals over a simulation grid (SG) at 80 m spatial resolution. With the realizations of residuals and, hence, positional errors generated in this way, the means, standard deviation, and cross correlation in bivariate positional errors at SG nodes are computed. The simulated error fields are also used to generate equal-probable realizations of vertices that define some road centerlines (RCLs), selected for this research through interpolation over the aforementioned simulated error fields, leading to error metrics for the RCLs and for the lengths of some RCL segments. The enhanced georectification of the RCLs is facilitated through error correction. A case study based in Shanghai municipality, China, was carried out, using HSR images as part of generalized point clouds that were developed. The experiment results confirmed that by using the proposed methods, spatially explicit positional-error metrics, including means, standard deviation, and cross correlation, can be quantified flexibly, with those in the selected RCLs and the lengths of some RCL segments derived easily through error propagation. The reference positions of these RCLs were obtained through error correction. The positional accuracy gains achieved by the proposed methods were found to be comparable with those achieved by conventional image georectification, in which the CD were used as image-georectification control data. The proposed methods are valuable not only for uncertainty-informed image geolocation and analysis, but also for integrated geoinformation processing.

Funder

Shanghai Surveying and Mapping Institute

China’s Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3