Estimation and Mapping of Soil Organic Matter Content Using a Stacking Ensemble Learning Model Based on Hyperspectral Images

Author:

Wu Menghong12,Dou Sen1,Lin Nan2,Jiang Ranzhe2,Zhu Bingxue3

Affiliation:

1. College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, China

2. College of Surveying and Exploration Engineering, Jilin Jianzhu University, Changchun 130118, China

3. State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China

Abstract

Fast and accurate SOM estimation and spatial mapping are significant for cultivated land planning and management, crop growth monitoring, and soil carbon pool estimation. It is a key problem to construct a fast and efficient estimation model based on hyperspectral remote sensing image data to realize the inversion mapping of SOM in large areas. In order to solve the problem that the estimation accuracy is not high due to the influence of hyperspectral image quality and soil sample quantity during the estimation model construction, this study explored a method for constructing an estimation model of SOM contents based on a new stacking ensemble learning algorithm and hyperspectral images. Surface soil samples in Huangzhong County of Qinghai Province were collected, and their ZY1-02D hyperspectral remote sensing images were investigated. As input data, a feature band dataset was constructed using the Pearson correlation coefficient and successive projections algorithm. Based on the dataset, a new SOM estimation model under the stacking ensemble learning framework combined with heterogeneous models was developed by optimizing the combination of base and meta-learners. Finally, the spatial distribution map of SOM was plotted based on the result of the model over the study area. The result suggested that the input data quality of the estimation model is improved by constructing a feature band dataset. The multi-class ensemble learning estimation model with the combination strategy of the base and meta-learners has better predictive effects and stability than the single-algorithm and single-level ensemble models with homogeneous learners. The coefficient of determination is 0.829, the residual prediction deviation is 2.85, and the predictive set root mean square error is 1.953. The results can provide new ideas for estimating SOM content using hyperspectral images and ensemble learning algorithms, and serve as a reference for mapping large-scale SOM spatial distribution using space-borne hyperspectral images.

Funder

Science and Technology Development Project of Jilin Province

Education Department Research Project of Jilin Province

Natural Science Foundation of Jilin Province

Major Project of High Resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3