LSTM-Based Projectile Trajectory Estimation in a GNSS-Denied Environment

Author:

Roux Alicia12,Changey Sébastien1ORCID,Weber Jonathan2ORCID,Lauffenburger Jean-Philippe2ORCID

Affiliation:

1. French-German Research Institute of Saint-Louis, 5 Rue du Général Casssagnou, 68300 Saint-Louis, France

2. Institut de Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS), Université de Haute-Alsace, 2 Rue des Frères Lumière, 68100 Mulhouse, France

Abstract

This paper presents a deep learning approach to estimate a projectile trajectory in a GNSS-denied environment. For this purpose, Long-Short-Term-Memories (LSTMs) are trained on projectile fire simulations. The network inputs are the embedded Inertial Measurement Unit (IMU) data, the magnetic field reference, flight parameters specific to the projectile and a time vector. This paper focuses on the influence of LSTM input data pre-processing, i.e., normalization and navigation frame rotation, leading to rescale 3D projectile data over similar variation ranges. In addition, the effect of the sensor error model on the estimation accuracy is analyzed. LSTM estimates are compared to a classical Dead-Reckoning algorithm, and the estimation accuracy is evaluated via multiple error criteria and the position errors at the impact point. Results, presented for a finned projectile, clearly show the Artificial Intelligence (AI) contribution, especially for the projectile position and velocity estimations. Indeed, the LSTM estimation errors are reduced compared to a classical navigation algorithm as well as to GNSS-guided finned projectiles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Principles of GNSS, inertial, and multisensor integrated navigation systems;Groves;IEEE Aerosp. Electron. Syst. Mag.,2015

2. Ultra-tight GPS/IMU integration based long-range rocket projectile navigation;Zhao;Def. Sci. J.,2016

3. Fairfax, L.D., and Fresconi, F.E. (2012, January 23–26). Loosely-coupled GPS/INS state estimation in precision projectiles. Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA.

4. Wells, L.L. (2000, January 13–16). The projectile GRAM SAASM for ERGM and Excalibur. Proceedings of the IEEE 2000. Position Location and Navigation Symposium (Cat. No. 00CH37062), San Diego, CA, USA.

5. Duckworth, G.L., and Baranoski, E.J. Navigation in GNSS-denied environments: Signals of opportunity and beacons. Proceedings of the NATO Research and Technology Organization (RTO) Sensors and Technology Panel (SET) Symposium.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3