Trajectory Design for Multi-UAV-Aided Wireless Power Transfer toward Future Wireless Systems

Author:

Mu Jun,Sun Zhaojie

Abstract

In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted wireless power transfer (WPT) system, in which a set of UAV-mounted mobile energy transmitters (ETs) are dispatched to broadcast wireless energy to an energy receiver (ER) on the ground. In particular, we aim to maximize the amount of energy transferred to the ER during a finite UAV’s flight period, subject to the UAV’s maximum speed and collision avoidance constraints. First, the basic one/two-UAV scenarios are researched in detail, which show that UAVs should hover at fixed locations during the whole charging period. Specifically, the Lagrange multiplier method is employed to solve the proposed optimization problem for the case of two UAV situation. Specifically, the general conclusions based on the theoretical analysis of one/two-UAV scenarios are drawn contribute to deducing the trajectory design of UAVs when the number of UAVs increases from three to seven. The obtained trajectory solution implies that UAVs should be evenly distributed on the circumference with point (0,0,H) as the center and UAVs’ safe distance as the radius. Finally, numerical results are provided to validate the trajectory design algorithm for the multiple UAVs-enabled single-user WPT system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3