Transmission Line Object Detection Method Based on Contextual Information Enhancement and Joint Heterogeneous Representation

Author:

Zhao LijuanORCID,Liu Chang’an,Qu Hongquan

Abstract

Transmission line inspection plays an important role in maintaining power security. In the object detection of the transmission line, the large-scale gap of the fittings is still a main and negative factor in affecting the detection accuracy. In this study, an optimized method is proposed based on the contextual information enhancement (CIE) and joint heterogeneous representation (JHR). In the high-resolution feature extraction layer of the Swin transformer, the convolution is added in the part of the self-attention calculation, which can enhance the contextual information features and improve the feature extraction ability for small objects. Moreover, in the detection head, the joint heterogeneous representations of different detection methods are combined to enhance the features of classification and localization tasks, which can improve the detection accuracy of small objects. The experimental results show that this optimized method has a good detection performance on the small-sized and obscured objects in the transmission line. The total mAP (mean average precision) of the detected objects by this optimized method is increased by 5.8%, and in particular, the AP of the normal pin is increased by 18.6%. The improvement of the accuracy of the transmission line object detection method lays a foundation for further real-time inspection.

Funder

National Key R&D Program of China OF FUNDER

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3