Cooperative Downloading for LEO Satellite Networks: A DRL-Based Approach

Author:

Choi HongrokORCID,Pack SangheonORCID

Abstract

In low earth orbit (LEO) satellite-based applications (e.g., remote sensing and surveillance), it is important to efficiently transmit collected data to ground stations (GS). However, LEO satellites’ high mobility and resultant insufficient time for downloading make this challenging. In this paper, we propose a deep-reinforcement-learning (DRL)-based cooperative downloading scheme, which utilizes inter-satellite communication links (ISLs) to fully utilize satellites’ downloading capabilities. To this end, we formulate a Markov decision problem (MDP) with the objective to maximize the amount of downloaded data. To learn the optimal approach to the formulated problem, we adopt a soft-actor-critic (SAC)-based DRL algorithm in discretized action spaces. Moreover, we design a novel neural network consisting of a graph attention network (GAT) layer to extract latent features from the satellite network and parallel fully connected (FC) layers to control individual satellites of the network. Evaluation results demonstrate that the proposed DRL-based cooperative downloading scheme can enhance the average utilization of contact time by up to 17.8% compared with independent downloading and randomly offloading schemes.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning

2. Data-centric operations in oil & gas industry by the use of 5G mobile networks and industrial Internet of Things (IIoT);Christos;Proceedings of the 13th International Conference Digital Telecommunications (ICDT),2018

3. Dual Stream Transmission and Downlink Power Control for Multiple LEO Satellites-Assisted IoT Networks

4. Automatic Target Detection in Satellite Images using Deep Learning;Khan;J. Space Technol.,2017

5. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3