Nano-Hydroxyapatite Modified Tobacco Stalk-Based Biochar for Immobilizing Cd(II): Interfacial Adsorption Behavior and Mechanisms

Author:

Li Tianfu1,Li Xiaofei1ORCID,Shen Chaoran1,Chen Dian1,Li Fuhua1,Xu Weicheng1ORCID,Wu Xiaolian1,Bao Yanping1

Affiliation:

1. School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China

Abstract

Biochar, an eco-friendly, porous carbon-rich material, is widely studied for immobilizing heavy metals in contaminated environments. This study prepared tobacco stalks, a typical agricultural waste, into biochar (TSB) modified by hydroxyapatite (HAP) at co-pyrolysis temperatures of 350 °C and 550 °C to explore its Cd(II) adsorption behavior and relevant mechanisms. XRD, SEM–EDS, FTIR, and BET analyses revealed that HAP successfully incorporated onto TSB, enriching the surface oxygen-containing functional groups (P–O and carboxyl), and contributing to the enhancement of the specific surface area from 2.52 (TSB350) and 3.63 m2/g (TSB550) to 14.07 (HAP–TSB350) and 18.36 m2/g (HAP–TSB550). The kinetics of Cd(II) adsorption onto TSB and HAP–TSB is well described by the pseudo-second-order model. Isotherm results revealed that the maximum adsorption capacities of Cd(II) on HAP–TSB350 and HAP–TSB550 were approximately 13.17 and 14.50 mg/g, 2.67 and 9.24 times those of TSB350 and TSB550, respectively. The Cd(II) adsorption amounts on TSBs and HAP–TSBs increased significantly with increasing pH, especially in HAP–TSB550. Ionic strength effects and XPS analysis showed that Cd(II) adsorption onto HAP–TSBs occurred mainly via electrostatic interaction, cation exchange with Ca2+, complexation with P–O and –COOH, and surface precipitation. These findings will provide a modification strategy for the reutilization of tobacco agricultural waste in the remediation of heavy metal contaminated areas.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation, China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3