Thermodynamic Feasibility of Chemical Looping CO Production from Blast Furnace Gas Based on Fe-Ca-Based Carriers

Author:

Gao Yang12,Xie Huaqing1234,Sun Chao2,Qin Mengxin2,Wang Kun35,Shao Zhengri1

Affiliation:

1. Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou 115014, China

2. School of Metallurgy, Northeastern University, No. 11, Lane 3, Wenhua Road, Heping District, Shenyang 110819, China

3. National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China

4. Liaoning Engineering Research Center of Process Industry Energy Saving and Low-Carbon Technologies, Shenyang 110819, China

5. Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110000, China

Abstract

In this paper, a novel process for synergistic carbon in situ capture and the utilization of blast furnace gas is proposed to produce CO via chemical looping. Through thermodynamic analysis, this process was studied in terms of the carbon fixation rate, CO yield, in situ CO2 utilization rate, CH4 conversion rate and energy consumption. It provides valuable insights for achieving efficient CO2 capture and in situ conversion. FeO and CaO are used as the oxygen carrier and the carbon carrier, respectively. Under the conditions of reaction temperature of 400 °C, pressure of 1 bar and FeO/CO ratio of 1, the carbon capture rate of blast furnace gas can reach more than 99%. In the carbon release reactor, the CO yield is lower than that in the original blast furnace gas (BFG) if no reduction gas is involved. Therefore, methane is introduced as a reducing gas to increase CO yield. When the reaction temperature is increased to 1000 °C, the pressure level is reduced to 0.01 bar and the CH4/C ratio is 1:1 (methane to carbon), the CO yield is four times that of the initial blast furnace gas. Under the optimal conditions, the energy consumption of the system is 0.2 MJ/kg, which is much lower than that of the traditional process. This paper verifies the feasibility of the new process from the perspective of thermodynamics.

Funder

National Natural Science Foundation of China

Foundation of Liaoning Provincial Key Laboratory of Energy Storage and Utilization

111 Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3