Intelligent Fuzzy Logic-Based Internal Model Control for Rotary Flexible Robots

Author:

Gad Omar Mohamed1,Fareh Raouf2ORCID,Khadraoui Sofiane2,Bettayeb Maamar2,Rahman Mohammad Habibur3ORCID

Affiliation:

1. Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

2. Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

3. Biomedical/Mechanical Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA

Abstract

Recently, there has been widespread and vital adoption of flexible manipulators due to their increased prevalence. This is attributed to the growing demand for flexibility in various tasks like refueling operations, inspections, and maintenance activities. Nevertheless, these robots are under-actuated systems characterized by a nonlinear behavior and present dynamic coupling interactions that contribute to the complexity of the control process. The main control objective is to achieve an accurate tracking of the desired position while simultaneously reducing oscillations occurring in the link. Therefore, this paper proposes integrating the tuning and adaptive control by employing fuzzy logic methodology in conjunction with internal model control (IMC). The suggested controller takes advantage of intelligent techniques, simple structure, robustness, and easy tuning of the conventional IMC. Both triangular and trapezoidal Membership Functions (MFs) are applied in this study to create a pair of Fuzzy Logic Controllers (FLCs) based on the Mamdani method. These controllers are employed to dynamically adjust the parameters of the IMC, in contrast to the fixed parameters used in the conventional IMC approach. The effectiveness of the suggested Adaptive-based Fuzzy IMC (AFIMC) is showcased through simulation and practical experimentation, in scenarios both with and without disturbances. Results indicate that this technique outperforms conventional IMC in achieving control objectives and rejecting disturbances.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3