Power Output Optimisation via Arranging Gas Flow Channels for Low-Temperature Polymer Electrolyte Membrane Fuel Cell (PEMFC) for Hydrogen-Powered Vehicles

Author:

Chilver-Stainer James1,Elbarghthi Anas F. A.12ORCID,Wen Chuang1ORCID,Tian Mi1ORCID

Affiliation:

1. Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK

2. Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic

Abstract

As we move away from internal combustion engines to tackle climate change, the importance of hydrogen-powered vehicles and polymer electrolyte membrane fuel cell (PEMFC) technology has dramatically increased. In the present study, we aimed to determine the optimal configuration for the power output of a PEMFC system using computational fluid dynamics (CFD) modelling to analyse variations of the primary serpentine design of gas flow channels. This helps improve efficiency and save on valuable materials used, reducing potential carbon emissions from the production of hydrogen vehicles. Different numbers of serpentine gas channels were represented with various spacing between them, within the defined CFD model, to optimise the gas channel geometry. The results show that the optimum configuration was found to have 11 serpentine channels with a spacing of 3.25 mm. In this optimum configuration, the ratio between the channel width, channel spacing, and serpentine channel length was found to be 1:2.6:38 for PEMFCs. Furthermore, the inclusion of fillets to the bends of the serpentine gas channels was found to have a negative effect on the overall power output of the fuel cell. Moreover, the optimisation procedures with respect to the number of gas channels and the spacing revealed an optimal power density exceeding 0.65 W/cm2.

Funder

Royal Society

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3