Affiliation:
1. School of Control Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China
Abstract
This study proposes an optimal scheduling method for complex integrated energy systems. The proposed method employs a heuristic algorithm to maximize its energy, economy, and environment indices and optimize the system operation plan. It uses the k-means combined with box plots (Imk-means) to improve the convergence speed of the heuristic algorithm by forming its initial conditions. Thus, the optimization scheduling speed is enhanced. First of all, considering the system source and load factors, the Imk-means is presented to find the typical and extreme days in a historical optimization dataset. The output results for these typical and extreme days can represent common and abnormal optimization results, respectively. Thus, based on the representative historical data, a traditional heuristic algorithm with an initial solution set, such as the genetic algorithm, can be accelerated greatly. Secondly, the initial populations of the genetic algorithm are dispersed at the historical outputs of the typical and extreme days, and many random populations are supplemented simultaneously. Finally, the improved genetic algorithm performs the solution process faster to find optimal results and can possibly prevent the results from falling into local optima. A case study was conducted to verify the effectiveness of the proposed method. The results show that the proposed method can decrease the running time by up to 89.29% at the most, and 72.68% on average, compared with the traditional genetic algorithm. Meanwhile, the proposed method has a slightly increased optimization index, indicating no loss of optimization accuracy during acceleration. It can also indicate that the proposed method does not fall into local optima, as it has fewer iterations.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong province
Innovation Team Project of Jinan Science and Technology Bureau
China Postdoctoral Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献