An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm

Author:

Li Fan1ORCID,Su Jingxi1,Sun Bo1

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China

Abstract

This study proposes an optimal scheduling method for complex integrated energy systems. The proposed method employs a heuristic algorithm to maximize its energy, economy, and environment indices and optimize the system operation plan. It uses the k-means combined with box plots (Imk-means) to improve the convergence speed of the heuristic algorithm by forming its initial conditions. Thus, the optimization scheduling speed is enhanced. First of all, considering the system source and load factors, the Imk-means is presented to find the typical and extreme days in a historical optimization dataset. The output results for these typical and extreme days can represent common and abnormal optimization results, respectively. Thus, based on the representative historical data, a traditional heuristic algorithm with an initial solution set, such as the genetic algorithm, can be accelerated greatly. Secondly, the initial populations of the genetic algorithm are dispersed at the historical outputs of the typical and extreme days, and many random populations are supplemented simultaneously. Finally, the improved genetic algorithm performs the solution process faster to find optimal results and can possibly prevent the results from falling into local optima. A case study was conducted to verify the effectiveness of the proposed method. The results show that the proposed method can decrease the running time by up to 89.29% at the most, and 72.68% on average, compared with the traditional genetic algorithm. Meanwhile, the proposed method has a slightly increased optimization index, indicating no loss of optimization accuracy during acceleration. It can also indicate that the proposed method does not fall into local optima, as it has fewer iterations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong province

Innovation Team Project of Jinan Science and Technology Bureau

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3