Estimating the Performance Loss Rate of Photovoltaic Systems Using Time Series Change Point Analysis

Author:

Livera Andreas1ORCID,Tziolis Georgios1ORCID,Theristis Marios2ORCID,Stein Joshua S.2,Georghiou George E.1ORCID

Affiliation:

1. PV Technology Laboratory, FOSS Research Centre for Sustainable Energy, Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus

2. Sandia National Laboratories, Albuquerque, NM 87185, USA

Abstract

The accurate quantification of the performance loss rate of photovoltaic systems is critical for project economics. Following the current research activities in the photovoltaic performance and reliability field, this work presents a comparative assessment between common change point methods for performance loss rate estimation of fielded photovoltaic installations. An extensive testing campaign was thus performed to evaluate time series analysis approaches for performance loss rate evaluation of photovoltaic systems. Historical electrical data from eleven photovoltaic systems installed in Nicosia, Cyprus, and the locations’ meteorological measurements over a period of 8 years were used for this investigation. The application of change point detection algorithms on the constructed monthly photovoltaic performance ratio series revealed that the obtained trend might not always be linear. Specifically, thin film photovoltaic systems showed nonlinear behavior, while nonlinearities were also detected for some crystalline silicon photovoltaic systems. When applying several change point techniques, different numbers and locations of changes were detected, resulting in different performance loss rate values (varying by up to 0.85%/year even for the same number of change points). The results highlighted the importance of the application of nonlinear techniques and the need to extract a robust nonlinear model for detecting significant changes in time series data and estimating accurately the performance loss rate of photovoltaic installations.

Funder

SOLAR-ERA.NET Cofund 2 Additional Joint Call - AID4PV project

Solar Energy Technologies Office

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3